
A declarative-friendly API
for Web document manipulation

Benjamin Canou1, Emmanuel Chailloux1, and Vincent Balat2

1 LIP6 - UMR 7606, Université Pierre et Marie Curie,
Sorbonne Universités, 4 place Jussieu, 75005 Paris, France

2 CNRS, PPS UMR 7126, Univ Paris Diderot,
Sorbonne Paris Cité, F-75205 Paris, France

Abstract. The Document Object Model (DOM) is the document ma-
nipulation API provided to the JavaScript developer by the browser. It
allows the programmer to update the currently displayed Web page from
a client side script. For this, DOM primitives can create, remove or mod-
ify element nodes in the internal tree representation of the document.
Interactive documents can be created by attaching event handlers and
other auxiliary data to these nodes. The principle is interesting and pow-
erful, and no modern Web development could be possible without it. But
the implementation is not satisfactory when seeking predictability and
reliability, such as expected with declarative languages or static type sys-
tems. Primitives are too generic, and when called in abnormal conditions
can either throw exceptions or perform implicit imperative actions. In
particular, DOM primitives can conditionally and implicitly move nodes
in the document, in a way very difficult to be statically prevented or
even detected. In this article, we introduce cDOM, an alternative docu-
ment model that performs implicit deep copies instead of moves. By not
moving their children implicitly, it preserves the structure of nodes after
their creation and between explicit mutations. Side data embedded in
the document are also duplicated in a sensible way so that the copies are
completely similar in structure to the originals. It thus provides a more
usual semantics, over which existing declarative abstractions and type
systems can be used in a sound way. 3

Keywords: document manipulation, Web programming, multi-paradigm

1 Introduction

In most widespread Web programming solutions, the programmer has to mas-
ter numerous programming languages and environments. At least, she has to
know HTML and CSS, the content description languages, some server language
to generate pages like PHP or Perl, and the JavaScript programming language
3 Work partially supported by the French national research agency (ANR), PWD
project, grant ANR-09-EMER-009-01, and partly performed at the IRILL center for
Free Software Research and Innovation in Paris, France

to make Web pages interactive. Moreover, she has to handle the interactions
between these languages, a task usually done with very rudimentary techniques,
like directly writing client code using strings of the server language. This issue
is known in the literature as an impedance mismatch problem. Recent Web solu-
tions, from industry (such as Google Web Toolkit or Node.js) as well as research
projects (such as Links [4], Ocsigen [1] or HOP [9]), have already tackled this
problem, putting a great amount of work to give a uniform solution to program
the server and the browser at language level.

However, another impedance mismatch problem remains in these solutions.
The document manipulation APIs are different on the server and in the browser,
making the programmer work with the same document in very different ways. In
the past, this has not really been an issue. The server only produced the docu-
ment, while the client updated it by inserting new document parts dynamically
requested to the server. But in modern Web applications, this separation of roles
is not true anymore. The server side may want to perform mutations on the doc-
ument, while the client side certainly wants to create new content without asking
for the server to generate it. Providing the same document manipulation API on
both sides has thus become a key point for integrated client-server frameworks.

For untyped, imperative software, such as Node.js which brings JavaScript
to the server, this can simply be done by using the DOM on both sides. This
indeed provides a uniform API, albeit a very low level one. However, as we
detail in Section 2, the unusual semantics of the DOM make it incompatible
with declarative languages and advanced static type systems, neither directly
as an API, nor even as a low level implementation layer. Several solutions or
workarounds have already been tried to enable the use of the DOM in these
contexts, but none is completely satisfactory. The solution we present in this
article takes another direction by designing an alternative document model. This
model, cDOM, is as low level as the DOM so it can be used as a replacement.
However, its semantics is much more suited to be used by high level abstractions.
One of the main goals is to be able to reuse existing high levels languages and
tools for XML to manipulate the document in the browser. We present the
intuition behind cDOM in Section 3 and then give its formal description in
Section 4, along with a few implementation details. Section 5 then presents
the related works, and we finally conclude this article by presenting our future
research works around the topic.

2 What is wrong with the DOM

This section explains why using the DOM for document manipulation is not an
option both for declarative programming and static typing. Section 2.1 presents
our main source of concern: implicit moves. It features an example that be-
haves counter-intuitively from the point-of-view of a declarative programmer.
Section 2.2 presents the problems indirectly introduced by implicit moves. It
explains why implicit moves make some type checking problems too difficult for
existing static type systems, how they hinder even purely functional document

construction, and how they impact client-server programming. Section 2.3 then
makes a quick tour of existing solutions and workarounds to these problems.

2.1 Implicit moves

In specific situations, the DOM can implicitly move nodes in the document tree.
Let us examine an example which leads to such an implicit move in order to
understand why and when. An initial page consists of two lists containing two
items each. The elements of interest have been marked by hand with id attributes
in order to be able to retrieve the corresponding DOM nodes from JavaScript
(the standard technique). Figure 1 shows the HTML code, the rendering and a
visualization of the DOM tree. Within this page, we run JavaScript code that
calls DOM primitives to take the first element of the first list, and append it to
the second list. The effect on the DOM is indeed the insertion of the item in the
second list, but at the same time its deletion from the first list. Figure 2 shows
the code and the outcome. This behaviour may appear counter-intuitive to the
programmer unfamiliar with the DOM. She asked for an append operation, not
a move. As a result of implicit moves, the outcome of a series of DOM operations
can depend a lot on the initial state and be hard to predict.

... <ul id="L1">
<li id="A">A
<li id="B">B

... <ul id="L2">
<li id="X">X
<li id="Y">Y
 ...

• A • X
• B • Y

Lists - Browser

ul

li li

id
"L1"

id

"A"

id

"B"

ul

li li

id
"L2"

id

"X"

id

"Y"

Fig. 1. A simple page

var l2 = getElementById ("L2")
var a = getElementById ("A")
l2.appendChild (a) ;;

• B • X
• Y
• A

Lists - Browser

ul

li li

id
"L1"

id

"B"

ul

li li li

id
"L2"

id

"A"

id

"X"

id

"Y"

Fig. 2. An example of implicit
move

Implicit moves are introduced to compensate the fact that the set of DOM
primitives does not exactly fit the internal structure of the document. The mem-
ory representation of the page has to be a tree. The reason is obvious: page
elements are bound to graphical objects, so cycles or sharing in the structure
would not make sense. However, the set of primitives describes imperative op-
erations on a general graph structure. A DOM primitive application that would
introduce sharing or cycles in the structure is thus given an alternative behaviour
that preserves the tree shape.

2.2 Side effects of implicit moves

To be correctly handled by browsers, documents have to conform to precise for-
mats. Specific, strongly typed XML processing languages such as CDuce [3] make

it possible to ensure the validity of generated documents on the server. But for
DOM intensive applications, verifying the validity of the initial Web page is not
enough. It is often just a stub, enriched as data arrives from independent HTTP
requests. It ensues that page modifications also have to be proven preserving the
grammar.

Breaking validity during manipulations Unfortunately, static checking of DOM
operations is difficult, mainly because of implicit moves (which are not present
in high level XML APIs). For instance, figure 3 shows a program which is well
typed at first glance, since it takes references to li elements and adds them to
an ul element, which is correct according to the XHTML grammar. But the
outcome of executing this program with the initial (valid) Web page of figure 1
is a broken Web page, since the first list is now empty, and thus not well typed
anymore. Of course this minimal example is trivial and is presented only to
exhibit the problem: a DOM manipulation on one node can dynamically break
the validity of another node.

var l2 = getElementById ("L2")
var a = getElementById ("A")
var b = getElementById ("B")
l2.appendChild (a)
l2.appendChild (b)

? • X
• Y
• A
• B

Lists - Browser ul

li li

id
"L1" ul

li li li li

id
"L2"

id

"A"

id

"X"

id

"Y"

id

"B"

Fig. 3. A validity breaking implicit move

Breaking validity during construction It is even possible to obtain an invalid
result from a purely constructive code that would lead to a correct result using
an XML language. The reason is that XML manipulation APIs allow sharing,
whereas the DOM forbids sharing using implicit moves. Figure 4 shows an ex-
ample HOP program, its evaluation on the server (where an XML representation
that allows sharing is used) and on the client (where the back-end is the DOM).
On the server, the result is the one expected by the programmer while on the
client, an implicit move occurs and the first list ends up empty. Ensuring that
these cases do not occur is left to the programmer. As a result, using the DOM
as a back-end for high-level abstractions is not a reliable option.

(let ((a ("A"))
(b ("B")))

(<DIV> ((a))
((a b))))

X
Y

Z

<DIV>
A
AB

</DIV>

<DIV>

AB

</DIV>

HOP source Result on the server Result on the client

? ?
Lists - Browser

Client eval. at point X

ul ul • A ?
Lists - Browser

At point Y

ul

li

ul ? • A
• B

Lists - Browser

At point Z

ul

li

ul

li li

Fig. 4. Well-typed code leading to an invalid result

Influence on server document models In integrated client-server applications,
the task is not only to produce a valid document. The server also has to produce
a document that will be manipulated by a client program in a valid way. In this
respect, existing, server side only document models are insufficiently expressive.
The problem resides in the transition between the server representation and the
DOM. The technique used is always the same: nodes referenced by the server side
are retrieved by the client side by searching the DOM tree for unique identifiers
inserted in the XML (manually of automatically). If the server representation
allows sharing, which is the case for most high level solutions, a shared node in
this representation will be expanded to duplicate XML elements. Thus, any iden-
tifier it may contain will be duplicated as well, leading to undefined behaviour
on the client.

2.3 Existing solutions to handle implicit moves

Of course, this problem is not new. Several solutions have been introduced by
Web frameworks as well as research works. But to our knowledge, none of them
offer as much versatility as the one we propose and most of them have non
negligible drawbacks.

Client-server JavaScript solutions (for instance using Node.js) can use the
DOM on both sides. But as we already explained, this is only an option in such
untyped, imperative contexts.

High level, language based client-server frameworks (eg. HOP, Ocsigen, Links,
OPA, Ur/Web) use an intermediate representation as we explained earlier. This
solution has many advantages for document construction, but when it comes to
document mutations, it is not better than using the DOM. The programmer has
to make sure not to introduce sharing in the documents she builds, otherwise
nasty side effects (including implicit moves) may occur later. Moreover, the task
is actually as difficult as ensuring that no implicit move occurs with the DOM.

More mainstream frameworks hide the document structure and rely on pre-
built components instead. User code is mostly glue code, written either in server
code (eg. Ruby on Rails, django) or in JavaScript (eg. ExtJS, Dojo). The main
restriction is that the programmer has to compose its pages only of existing com-
ponents of some framework. Frameworks are often incompatible, and writing a
custom component means learning hackish internal details.

Research solutions already exist to prevent implicit moves by programs using
the DOM. However, their integration to existing mainstream solutions is difficult
due to the very advanced techniques used. Related research works will be detailed
in Section 5.

3 An implicitly copying document model

All the existing solutions we just presented try to prevent situations which lead
to implicit moves. Our solution takes a different path. cDOM is an alternative
document model, as imperative and low level as the DOM but without implicit

moves. Instead, cDOM performs implicit copies. It leaves the original node in
place, and inserts a copy of it at destination.

3.1 Deep copies and auxiliary data

To preserve document validity, deep (as opposed to shallow) copies have to be
performed so the grammatical structure of original and copied nodes are the
same. With existing solutions, the programmer can already detect when an im-
plicit move can occur and replace it manually by a copy. cDOM simply makes
this operation systematic. Recursively copying children nodes is not difficult and
the DOM primitive cloneNode already does that very operation. But for inter-
active documents, such a recursive copy of nodes is not enough. To preserve the
behaviour of nodes, associated auxiliary data have to be copied along with the
nodes, in particular event handlers. With existing solutions, this task is manual
and non trivial. It requires the programmer to make sensible decisions about
what to copy, what not to and what to share with the original node. If auxiliary
data are structured language values, the programmer has to decide how deep the
copy has to be. Moreover, in the case of static typing, the copy operation has
to preserve the types of original auxiliary data. For all these reasons, it is not
possible to provide a generic deep copy algorithm for the DOM. Figure 5 shows
the definition of a node and two examples of non trivial decisions to be made
during a copy of this node.

var cpt = new Counter (0);
var node = document.createElement ("button");
node.appendChild (document.createTextNode("0"));
node.onclick = function () {
cpt.incr ();
var lbl = cpt.stringValue();
node.appendChild (document.createTextNode(lbl));

}

Should a copy of node use the same counter cpt or a copy?

Should a copy of node modify itself or the original?

Fig. 5. Different options for the deep copy of a node

3.2 A sensible deep copy algorithm

In the previous example, the lack of convention made it hard to decide whether
side data had to be copied or not. Providing a usable copy mechanism thus
means providing such a convention, preferably an intuitive one. The major con-
tribution of this work is thus the convention we propose, which is as follows:
(1) let the programmer decide whether side data are associated to some node or
not, and (2) reuse the familiar notion of lexical scope to materialize this choice.
In practice, the idea is to introduce a clearly delimited syntactic construction
for node definition, and use it to delimit the set of values to be copied along.
Figure 6 gives an example written in such a high level (here ML based) language.
In this example, if a copy of the node occurs, in both cases the callback will be
copied along and act on the copied node rather than the original. However, in

one case it will use a shared counter and in the other a local copy, depending on
the location of its definition.

With shared reference
let with_shared_counter =
let r = ref 0 in (* outside *)
let rec self =
node <a>
[node <text> content = "incr" end]
prop on_click = fun () ->
r := !r + 1 ;
replace self
[node <text> ()

content = string_of_int !r
end]

end
in self ;;

With local references
let with_copied_counter =
let rec self =
node <a>
let r = ref 0 in (* inside *)
[node <text> content = "incr" end]
prop on_click = fun () ->
r := !r + 1 ;
replace self
[node <text> ()

content = string_of_int !r
end]

end
in self ;;

Fig. 6. Self modifying graphical counter in an ML frontend to cDOM

This mechanism is more predictable, not only by the programmer but also
by tools, in particular type systems. With implicit copies, the implicit mutation
of nodes content is now gone. The only times when a node is modified are its
creation and explicit modification. These cases can be handled by type checking
the new assigned content, for instance with existing type systems for XML.
The only additional restriction is that the node should not be used until it is
completely built, so that a copy of an incomplete node cannot occur.

We chose not to limit our solution to a specific high level language, but to
build a foundation on top of which various languages and abstractions could be
built or ported. The solution we propose is to add meta-information to nodes
directly in the low-level document model. This information is used as an oracle
for a generic copy algorithm to decide which objects are to be copied along with
the node. As we just explained, these meta-information can be used to maintain
lexical scoping information at run-time. However, cDOM’s meta information
storage is actually flexible enough for meta-information to be used in other ways,
for instance to be adapted to language not equipped with a clear lexical scoping.

4 Formal specification of cDOM

As the DOM, cDOM takes the form of a language independent API. However,
cDOM is specified more formally by an operational semantics. This section first
gives precise yet informal definitions of the concepts and then the specification.

4.1 Main concepts

− Document The main concept we are formalizing is the document as used in
the Web (eg. XML, DOM). A document assembles nodes that can represent
textual content, graphical and semantic elements in a hierarchical structure.

− Node A node can have children nodes, and can have (at most one) parent
node. It has a tag which defines its role in the document. Several nodes can

have the same tag in a document. This role is not defined by the document
itself but by the program interpreting it (for instance, a Web browser will
render a bullet list when it encounters a ul tag). The formalism presented
stays at the DOM level in this sense: it is a uniform representation and does
not bear any grammar notion.

− Values To handle textual content and programmable interactions, document
nodes are enriched with side data. Values is the term we use to designate
both nodes and side data. We distinguish immediate data such as integers
and strings from structured data that we call blocks (in JavaScript, blocks
designate language objects, including functions). The relation between these
types is the following: Value = Imm ∪Object , Object = Block ∪Node.

− Properties Nodes and side data are linked using properties: associations be-
tween objects and values labeled with keys. Unlike nesting, properties can
lead to sharing and cycles in the document.

− Imperative Document The document notion we just defined is inherently
static, and thus not appropriate to formalize the DOM. We define the notion
of imperative document combining a document as previously defined that we
call the state with a set of primitives to manipulate it.

− Primitives To implement this separation, cDOM is specified as a set of prim-
itives, an API, much as the DOM. They take parameters and return results,
which are values as specified earlier.

4.2 Parameters

In the previous section, we described the main concepts and associated types pro-
vided by our formal model. These definitions are made more flexible by defining
some of the notions as parameters, so they are not fixed by the model but are
to be instantiated specifically for each implementation.

− Tag The set of possible node tags. There are no constraints on this parameter
for the semantics to be sound but a specific implementation may add some.

− Imm The (unrestricted) domain of immediate values.
− Key The domain of object property names. It has to be enumerable and

provided with a total order. In practice, keys have to be immutable.
− Nil The type of unimportant values. In this formalism, Nil is not an implicit

subtype of everything. Types that contain Nil will be written as such.
− Int The representation of integers. The formalism relies on the mathematical

definition, but in practice, there is no chance for a document to contain a
node with a number of children that would trigger computer arithmetic
overflows, so the approximation is reasonable.

− Enum(S) Some primitives return not only one but a collection of results.
Enum(S) is the representation of collections of elements of a type S. In the
semantics, the transition between mathematical sets and concrete collections
is exhibited by the use of the function enum : P(S)→ Enum(S).

4.3 Document state

The document state is specified in cDOM by a tuple (H,L, T, P, S, s). Letters
are mnemonics for Heap, Labels, Tree, Properties, Scopes and Stack. The first
four components (H,L, T, P) describe the document structure while the last two
(S, s) describe the dynamic scoping information.

− H ⊆ Node ∪ Block is the domain of existing objects.
− L ⊆ Node × Tag gives a tag to each node of the document.
− T ⊆ Node × List(Node) associates to each node the list of its children.
− P ⊆ Object ×Key ×Value associates objects to values through labels.
− S ⊆ Node ×Object records for each nodes the objects under its scope.
− s ∈ List(Node) represents the stack of currently opened scopes.

We intentionally chose a simple mathematical structure to ease implementa-
tion, and be close to data structures. But this structure is not precise enough
to express the document structure. We thus restrict it using the following well-
formed predicate. A notable point is that this predicate is only useful at specifi-
cation level and is transparent to the implementer: well-formedness is preserved
by definition of the primitives. The implementer only has to correctly map the
specification to her data structure and the body of her primitives.

Definition 1. A tuple (H,L, T, P, S, s) is a well-formed cDOM state if and only
if (1) L maps each node in H to a unique tag (2) T is a forest (no sharing, no
cycles) over H∩Node (3) T and P only reference nodes present in H (4) P only
references blocks present in H (5) An object can be in the scope of only one node
in S (6) No cyclic scope chain exist in S.

Notations To increase readability, in the following formulas and figures, means
a node, a block and an object. Labeled versions are used when disambiguation
is required (eg. x, y). We also define operators to compute the descendants and
ancestors of a node.

Desc() =
⋃

′∈T () ({ ′} ∪Desc(′))
Anc() = { ′} ∪Anc(′) if ∃ ′, ∈ T (′), ∅ otherwise

4.4 API

The following list gives the complete cDOM API, the parameters and result types
in the form return type primitive (types of parameters). cDOM primitives are
divided into two main subsets: accessing (reading) primitives and modifying
(writing) primitives.
− Int children (Node) − Node + Nil child (Node, Int)
− Enum(Node) roots (Nil) − Enum(Key) properties (Object)
− Value + Nil get (Object , Key) − Tag tag (Node)
− Node create_node (Tag) − Object create_block (Nil)
− Nil close (Node) − Nil reopen (Node)
− Nil detach (Node) − Node copy (Node)
− Nil bind (Node, Node) − Nil set (Object , Key , Value)
− Nil unset (Object , Key)

Semantic rules The behaviour of each primitive is described by a set of (for
some only one) semantic rule(s). Each rule is of the form

conditions
S ` prim(a0, · · · , an) = r, S′
(rule)

reading: given arguments (a0, · · · , an) and an initial state S, if the conditions are
verified, the primitive prim can be applied, and the rule (Rule) can be elected
to describe the behaviour of this application. If so, its return value is r, and the
original state is transformed into the new state S′.

Accessing primitives Figure 7 gives the semantics of primitives which are only
meant to read the document state from the host language, without modifying
it. To browse the document tree, roots gives the root nodes (more than one
document root can be present, for instance any newly created node is considered
a root), children and child allow to browse the structure by respectively giving
the number of children and the nth child of a node. The set of properties defined
by a given node is obtained with properties, and get gives the value of a given
property. The tag of a node is given by tag.

∈ H ∩ Node 0 6 i < length(T ())
S ` child(, i) = nth(T (), i), S

(child) ∈ H ∩ Node
S ` children() = length(T ()), S
(children)

∈ H ∩ Node ¬(0 6 i < length(T ()))
S ` child(, i) = nil, S

(child-unbound)

S ` roots(nil) = enum({ |Anc() = ∅}), S
(roots) (, t) ∈ L

S ` tag() = t, S
(tag)

∈ H
S ` properties() = enum({k|(, k, v) ∈ P}), S
(properties)

∃(, k, v) ∈ P
S ` get(, k) = v, S

(get) @(, k, v) ∈ P
S ` get(, k) = nil, S

(get-unbound)

Fig. 7. Semantics of accessing primitives

Modifying primitives Figure 8 gives the semantics of primitives that modify the
document state. For block related primitives, create_block allocates a new,
empty one, set either creates or assigns a property depending on its preexis-
tence and unset removes a property. For node related primitives, create_node
allocates a fresh one, detach removes the link between a node and its parent,
and bind links a node to a parent. Two rules describe the evaluation of the later:
either (1) the node is simply attached to its new parent if it is a root and if the
new link does not create a cyclic chain in T , or (2) a deep copy of the node is
performed by delegation to the explicit copy primitive and the result is attached
to the parent.

Scope information When a new node is allocated, its scope is automatically
opened on the scope stack. Scopes are explicitly closed, using the close primi-
tive. We also added a reopen primitive to push again on the scope stack a node
whose scope has already been closed. This primitive may or may not be necessary,
depending on the high level primitives given to the programmer. For instance,

v ∈ H ∪ Imm k ∈ Key ∈ H @v′,
(

, k, v′) ∈ P
(H,L, T, P, S, s) ` set(, k, v) = nil, (H,L, T, P ∪ (, k, v), S, s)

(set)

v ∈ H ∪ Imm ∃v′ (, k, v′) ∈ P

(H,L, T, P, S, s) ` set(, k, v) = nil,
(
H,L, T, P\{(, k, v′)} ∪ {(, k, v)}, S, s

)(modify)

∃ (, k, v) ∈ P
(H,L, T, P, S, s) ` unset(, k, v) = nil, (H,L, T, P\ {(, k, v)} , S, s)
(unset-1)

@ (, k, v) ∈ P
(H,L, T, P, S, s) ` unset(, k, v) = nil, (H,L, T, P, S, s)
(unset-2)

n /∈ H
(H,L, T, P, S, p :: s) ` create_node(nil) = n, (H ∪ { n} , L, T, P, S ∪ {(p, n)} , n :: p : : s)
(create)

n /∈ H
(H,L, T, P, S, p :: s) ` create_block(nil) = n, (H ∪ { n} , L, T, P, S ∪ {(p, n)} , p :: s)
(create)

n /∈ H
(H,L, T, P, S, []) ` create_node(nil) = n, (H ∪ { n} , L, T, P, S, n :: [])
(create-root)

(H,L, T, P, S, p :: s) ` close(nil) = nil, (H,L, T, P, S, s)
(close-scope)

n /∈ H
(H,L, T, P, S, []) ` create_block(nil) = n, (H ∪ { n} , L, T, P, S, [])
(create-root)

p ∈ H ∩ Node
(H,L, T, P, S, s) ` reopen(p) = nil, (H,L, T, P, S, p :: s)
(reopen-scope)

∃ p ∈ H ∩ Node, n ∈ T (p)
(H,L, T, P, S, s) ` detach(n) = nil, (H,L, T\{(p, l)} ∪ {(p, l− n)}, P) , S, s
(detach-1)

n ∈ H ∩ Node Anc(n) = ∅
(H,L, T, P, S, s) ` detach(n) = nil, (H,L, T, P, S, s)
(detach-2)

p ∈ H ∩ Node n ∈ H ∩ Node Anc(n) = ∅ n /∈ Anc(p)
(H,L, T, P, S, s) ` bind(p, n) = nil, (H,L, T [p → n :: T (p)] , P, S, s)

(attach)

p ∈ H ∩ Node n ∈ H ∩ Node Anc(n) 6= ∅ ∨ n ∈ Anc(p)
(H,L, T, P, S, s) ` copy(n) = n′ ,

(
H′, T ′, P ′, S′, s

)
(H,L, T, P, S, s) ` bind(p, n) = nil,

(
H′, L′, T ′ [

p → n′ :: T ′(p)
]
, P ′, S′, s

)(attach-copy)

Fig. 8. Semantics of modifying primitives

in an object oriented language, it may be sensible to consider a method call on
a node as within its scope. Every new object alocated by one of the create

primitives is associated in S to the top node present in the scope stack s. If the
scope stack is empty, the new object is considered not associated to any node.

Copy cDOM provides an explicit copy primitive which takes a node and
returns its deep copy ′. Descendent nodes are duplicated unconditionally so
that no sharing or cycle can occur, and blocks are copied or not depending
on scope information. The links between nodes are copied as well, so that the
duplicated value has the same memory shape than the original. We will not
elaborate on that matter which is a bit out of scope, but as explained earlier,
the idea is of course to ensure that both can be considered of the same type,
so that the model is usable with strongly typed languages. Let us start with an
intuitive description, using the graphical example of figure 10. In (1) and (2)
The programmer calls copy on a node . The set of objects to copy is composed
of all the objects which are reachable from using both the tree structure or

H′ = H ∪ { |(·,) ∈ C}
L′ = L ∪

{
(′, l)

∣∣(, ′) ∈ C, (, l) ∈ L
}

T ′ = T ∪
{
(′, l′)

∣∣(, ′) ∈ C, l = T (), l′ = map(rebind, l)
}

where rebind(∈ H) = ′ if (, ′) ∈ C, otherwise
P ′ = P ∪

{
(′, k, v′)

∣∣(, ′) ∈ C, v′ = rebind(P (, k))
}

S′ = S ∪
{
(′, ′)

∣∣(, ′) ∈ C, (, ′) ∈ C ∪ C
}

(H,L, T, P, S, s) ` copy(n) = A (n),
(
H′, L′, T ′, P ′, S′, s

)(copy)

with C = {(, ′)| ∈ R, ′ /∈ H (fresh node/block)}
where R = fix(Restrict, { n}) / Restrict(E) =

⋃
∈E Desc() ∪

⋃
∈E{

′|(, ·, ′) ∈ P ∧ ′ ∈ I}
and I = fix(Collect, { n}) / Collect(E) =

⋃
∈E Desc() ∪

⋃
∈E{

′|(, ′) ∈ S}

Fig. 9. Semantics of cDOM copy operation

properties, and scope information. In (3) Selected nodes are copied by creating
fresh nodes in H. In (4) and (5) The parenting links between original nodes
are replicated between the duplicates, so that the forest structures of the two
groups are the same. All the properties of original blocks are replicated, and the
associated values are as follows. If the value is a duplicated node or block its
copy is used. Otherwise the value is used as is. In the end (6), all the objects
reachable from and in the scope of are duplicated, the internal links between
duplicated objects reflect the structure of the originals, and external links are
duplicated as is. Figure 9 gives the formal semantics of the copy primitive.
The resulting state is the original state augmented with the objects and links
resulting from the copy. For this, the rule premises involve a set C of associations
between copied objects and their copies. The specification of C is decomposed
into the following three steps. First, we collect the set I of all the objects which
are descendants or under the scope of , taking care of potential nested scopes.
The Collect function describes one step of the traversal and its iteration to a
fix-point gives the complete collection. We then extract from I the subset R of
objects which are reachable from through the document tree or properties.
Finally, C associates original objects to fresh copies.

()← copy target

(1) initial graph

()
()()

()

(2) nodes in scope

()
()()

()

(3) duplication of nodes

(4) internal relink (5) external relink

()

(6) copied node

Fig. 10. Illustrated example of a copy operation

4.5 Consistency

To ensure that the API specification is sound and actually corresponds to our
needs of modeling the behaviour of the DOM, we have to state that it is de-
terministic (in other words that it does not bypasses DOM behaviour traits by
introducting indeterminism) and that it preserves the well formedness through-
out primitive applications, in particular that the copy operation preserves a
DOM-like structure.

Definition 2. A primitive application is deterministic if at most one rule can
be selected to describe it.

Theorem 41 (Determinism) For one initial state and choice of arguments,
at most one rule can be elected to describe the behaviour of a given primitive
application.

Proof. For each primitive, by showing that any pair of associated rules have
mutually exclusive conditions. ut

Theorem 42 (Well-formedness preservation) A well defined application in
a well formed initial state results in a well-formed final state.

Proof. For most rules, simply by observing that the required conditions are a
sufficient subset of the well-formed predicate clauses. The difficulty resides in the
copy operation. We have to prove that all the clauses of the validity predicate are
verified over the final state of the copy operation. For this, we observe that every
component X ′ of the resulting state is the union of the original component X
and a new set X+, and that X and X+ are always disjoint. The union of two
forests over disjoint sets of nodes being also a forest, H and H+ being disjoint,
and T+ being a forest over H+ (because it is a copy of a subforest of T over H),
we have that T ′ is also a forest. The same reasoning can be used to show that the
structural restrictions over S′ (no sharing and no cycles) are respected. Finally,
a proof that the added properties only reference existing objects is obtained by
definition of the rebind function, used to give values to properties in P ′ using
only values of H and H+. ut

We have proven that the copy operation does not break the model, now we
have to prove that it is indeed useful. For this, we define a notion of similarity
of structure between two nodes, and prove that the copy operation preserves the
structure.

Definition 3. Two nodes are structurally similar iff (1) they have the same tag,
(2) they have the same number of children, and their children are structurally
similar pairwise, and (3) They have the same set of properties, and the associated
values are structurally similar pairwise. Two objects are the same if they have
the same set of properties, and the associated values are structurally similar
pairwise. Two immediate values are similar if they are equal.

Theorem 43 (Structure preservation) The node resulting of a copy opera-
tion is structurally similar to the the original.

Proof. By definition of the copy operation, we have directly the respect of tags,
number of children and set of properties for all objects duplicated in the copy. It
remains to prove that children and properties’ values are similar pairwise. For
each of these pairs (v, v′) where v is the original and v′ the duplicate, by definition
of rebind, either v′ is v or v′ is a copy of v using the same copy definition. For
the first case, we use the fact that v is structurally similar to itself. The second
case is then proven by coinduction. ut

4.6 Implementing cDOM

The difficulty of implementing cDOM comes from scope information, which can-
not remain static. It has to be managed at run time. We wrote two (non dis-
tributed) research prototypes using two techniques to store the scope informa-
tion. This section discusses these possibilities.

The first possibility is to store a list in each allocated node, initially empty
and dynamically filled with pointers to all the objects allocated within the node’s
scope. The copy algorithm can remain close to the specification: (1) build transi-
tively the set of objects in the scope starting from the root to copy, (2) traverse
the graph, duplicating encountered objects and links, memoizing already copied
objects to respect sharing and cycles, and (3) stop following links when they
point out of the set built in the first step. The memory overhead is very local-
ized, implying no memory overhead on programs which do not perform document
manipulations. By dynamically switching the allocator when not in the scope of
any node, there can also be no performance overcost for such programs. Imple-
menting this methods requires an advanced memory mechanism such as weak
references or a node specific garbage collection in order not to consider alive
forever any value allocated within the scope.

The second possibility is to store in each allocated object a backpointer to
the node whose scope it belongs to. The algorithm is a little more complex here,
because one cannot easily compute the objects in the scope of a node, apart from
traversing the whole memory graph. The method is to build the deep copy by
steps, maintaining a set of already copied nodes. At each step, (1) traverse the
leaves of the already copied subtree and duplicate nodes and blocks backpoint-
ing to an already copied subtree, (2) traverse again the subtree, update pointers
considered external at the previous step but now pointing to copied objects,
redirecting them to the copies, and (3) iterate until a fix point is reached. For
this method too, obtaining exact memory collection is doable only with weak
pointers, but the memory leak is much more reasonable. It only arises when a
node local value is put in a global reference, and not for any local value. It is thus
the technique to choose to implement cDOM over current JavaScript implemen-
tations. With both methods, having a memory exact JavaScript implementation
of cDOM over the DOM implies writing a garbage collection helper function,
which browses the document regularly and unlinks unused objects using scope
information, enabling the next JavaScript collection to actually delete them.
Anyway, this will not remain a major concern for long. Weak references are al-

ready present in some browsers and are planned for a forthcoming ECMAScript
specification.

5 Related works

Works on DOM calls verification The most advanced theoretical work has been
led by Peter Thiemann [10], who proposed to integrate an ad-hoc type system
into a general purpose language to check DOM calls in order to refuse statically
programs which could result in implicit moves. In the same vein, there have been
works on automatic tests generation to reject erroneous DOM transactions [7].
This approach is indeed a possible way to solve the problem of implicit moves,
and gives direct solutions to the theoretical problems explained in section 2.
However, we have two main concerns, which led us to propose our alternative
approach.(1) This kind of checks cannot be directly encoded in type systems or
tools available in general purpose languages. Moreover, the types or test cases
to produce are complex, so these works rely on automatic solvers. Both these
aspects imply practical difficulties to obtain good integration to languages and
environments, in particular the difficulty to produce useful error messages and
debugging possibilities. (2) This solution rejects programs that appear intuitively
correct to the declarative programmer and are accepted by advanced XML func-
tional languages such as CDuce. We thus chose to orient our solution on an
alternative document model which accepts such programs.

Works on DOM specification There have been several efforts to formalize the
different components of the Web browser. We can cite the formal specification
of the now defunct JavaScript 2.0 [8], a minimal formal model of JavaScript [6]
or closer to our work a semantics of DOM primitives [5]. We shall not elaborate
on these works, because we take an alternative approach: the formal model we
develop in this paper is a simplification of the DOM.

Deep copy of DOM nodes Libraries such as jQuery define smart copy operations
able to duplicate auxiliary data but only to a limited extent. In particular, event
handlers are cloned but their environment is copied only in a shallow way. Hence,
the copied node will react to events, but the associated action has a good chance
to be performed on the original node instead of the duplicate. It is possible to
work around this behaviour by being very careful about what ends up in the
environment of the event handler closure. This means having a great knowledge
of the language and writing trickier code, such as flattening all the environment
by hand in the DOM node, so a shallow copy will suffice, assuming that the
event code only accesses its environment in an indirect way through the node.

6 Conclusion, ongoing and future works

This article has presented cDOM, an alternative to the DOM. The implicit moves
of the DOM are replaced by implicit deep copies that take into account auxiliary

data, including event handlers. As a result, cDOM is more suited than the DOM
for contexts in which predictability is important such as declarative languages or
static type systems. In particular, existing functional XML languages and type
systems can be ported without major modifications to the browser.

Of course, we want to prove our approach correct and usable by experimenta-
tion. For this, we have specified [2] and are currently implementing an ML-based
language on top of cDOM (the one shown in one of the examples), which can
run over JavaScript and the DOM, and brings static typing of document manip-
ulations.

References

1. Balat, V., Chambart, P., Henry, G.: Client-server Web applications with Ocsigen.
In: WWW2012 dev track proceedings, Lyon, France (April 2012) 1–4

2. Benjamin, C.: Programmation Web Typée (Typed Web Program-
ming). PhD thesis, Université Pierre et Marie Curie (2011) Available at
http://www.pps.jussieu.fr/~canou/these.pdf (in French).

3. Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML-Centric General-
Purpose Language. In: 8th International Conference on Functional Programming
(ICFP’03), New York, NY, USA, ACM (2003) 51–63

4. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web Programming Without
Tiers. In: 5th International Symposium on Formal Methods for Components and
Objects (FMCO’06), Springer-Verlag (2006) 266–296

5. Gardner, P.A., Smith, G.D., Wheelhouse, M.J., Zarfaty, U.D.: Local Hoare rea-
soning about DOM. In: 27th Symposium on Principles of Database Systems
(PODS’08), New York, NY, USA, ACM (2008) 261–270

6. Guha, A., Saftoiu, C., Krishnamurthi, S.: The Essence of JavaScript. In D’Hondt,
T., ed.: 24th European Conference on Object-Oriented Programming (ECOOP’10).
Volume 6183 of Lecture Notes in Computer Science., Springer (2010) 126–150

7. Heidegger, P., Bieniusa, A., Thiemann, P.: DOM Transactions for Testing
JavaScript. In Bottaci, L., Fraser, G., eds.: 5th International Academic and Indus-
trial Conference on Testing – Practice and Research Techniques (TAIC PART’10).
Volume 6303 of Lecture Notes in Computer Science., Springer (2010) 211–214

8. Herman, D., Flanagan, C.: Status report: specifying javascript with ML. In:
Workshop on ML (ML’07), New York, NY, USA, ACM (2007) 47–52

9. Serrano, M., Gallesio, E., Loitsch, F.: Hop, a language for programming the web
2.0. In: 21st Symposium on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’06), New York, NY, USA, ACM (2006) 975–985

10. Thiemann, P.: A Type Safe DOM API. In Bierman, G., Koch, C., eds.: 10th In-
ternational Symposium on Database Programming Languages (DBPL’05). Volume
3774 of Lecture Notes in Computer Science., Springer (2005) 169–183

