How to Run your Favorite Language in Web Browsers’

The Revenge of Virtual Machines (over JavaScript)

Benjamin Canou
LIP6 - UMR 7606
Université Pierre et Marie Curie
Sorbonne Universités
4 place Jussieu
75005 Paris, France
Benjamin.Canou@Iip6.fr

Emmanuel Chailloux
LIP6 - UMR 7606
Université Pierre et Marie Curie
Sorbonne Universités
4 place Jussieu
75005 Paris, France
Emmanuel.Chailloux@lip6.fr

Jéréme Vouillon
CNRS, PPS UMR 7126
Univ Paris Diderot
Sorbonne Paris Cité
F-75205 Paris, France
Jerome.Vouillon@pps.jussieu.fr

ABSTRACT

This paper is a concise guide for developers who want to
port an existing language to Web browsers, about what to
do and what not to. It is based on the various experiments
that have been led in the OCaml language community. In
particular, it exhibits how reusing the underlying virtual
machine and bytecode associated to the language can come
of great help in this task.

Categories and Subject Descriptors
D.3.4 [Programming languages|: Processors

General Terms
Design, Languages, Experimentation

1. INTRODUCTION

In a number of situations, Web developers would prefer not
to program the browser in J avaScriptE], but rather in another
language, in particular an already existing one. This is the
case for instance when porting an existing code base to a
live Web demo, in language-based client/server frameworks
like GWT|1], HOP[14] or Ocsigen|10], or when a specific
application requires the use of an accordingly specific con-

*Work partially supported by the French national research
agency (ANR), PWD project, grant ANR-09-EMER-009-01

! In this article, we voluntarily don’t speak about EC-
MAScript, the standard, but JavaScript, the browser spe-
cific implementation.

Copyright is held by the author/owner(s).
WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

currency model or type system (to obtain a higher level of
expressivity or safety).

However, the only common denominator between browsers
in terms of programming capabilities is JavaScript. Plug-ins
used to be the way, but they are not available everywhere
anymore. This means, on one hand, that there is no stan-
dard way to execute a program written in another language,
and, on the other hand, that it has to be done through
JavaScript.

We, the authors of this article, come from the OCaml|13|
language community, in which several experiments have been
led during the past few years to program the client part of
Web applications. This experience, along with the fact that
OCaml is a language quite different from JavaScript on many
points, gives us a good hindsight on this domain, that we
want to share. This article is thus intended as a guide for im-
plementors of languages and development environments for
the Web. As a more scientific side topic, this article shows
how virtual machines come of great help in these solutions,
which is a good point since they have been adopted by most
recent languages and platforms.

In section we present ways to run core language fea-
tures. In section[3] we present ways to interact with external
JavaScript libraries. In section[d] we explain how to run dif-
ferent concurrency models over JavaScript’s event loop.

2. EXECUTING THE CORE LANGUAGE

This section describes the possibilities to host the execu-
tion of the core structures of your language in JavaScript,
and discusses the advantages of virtual-machine approaches.
Since we use OCaml to illustrate these techniques, let us
start with quick descriptions of JavaScript and OCaml.

JavaScript and OCaml. JavaScript is an imperative script-
ing language, originally aimed as a glue language for more

heavyweight components in the browser. It features a very
permissive dynamic type system, a just as permissive ob-
ject model based on prototypes, and some functional capa-
bilities, behind a Java-like syntax. It features very good
performance for a scripting language of its class, thanks to
impressive recent optimizations of JavaScript engines.

The OCaml language and environment are quite different
from JavaScript in many respects. OCaml is a general-
purpose programming language, with a very strict and ex-
pressive static type system, and brings functional, impera-
tive and object paradigms as first class citizens, along with
an expressive module system to organize programs and li-
braries. The programmer can choose between a bytecode
compiler producing portable code for a specific virtual ma-
chine, and a native code optimizing compiler.

2.1 Compilation to JavaScript

The most obvious way to run a foreign language over JavaScript

is of course to write a source to source compiler, from this
language to JavaScript. This has been done for OCaml by
Jake Donham, in 2007, in the form of OCamlJS|2|, a patched
compiler extended with a JavaScript backend.

This classical approach is probably the best candidate to
achieve good performance while keeping readability and trace-
ability of produced code. Moreover, it enables the imple-
mentor to lightly tweak the source language if necessary to
fit in the browser’s environment.

However, this approach has a few major drawbacks, which
in retrospective make the two following approaches prefer-
able when available. A major problem of this approach is
probably debugging. Generated code debugging is difficult,
JavaScript debugging is also difficult, so the combination
of the two can be a real nightmare. It actually took several
years and releases for OCamlJS to support the complete lan-
guage without bugs. Another technical difficulty is seman-
tics preservation. When compiling to JavaScript, one tends
to use corresponding core language features, which are some-
times not so corresponding. This is for instance the case in
OCaml with exceptions and tail recursion, that cannot be
simply translated to JavaScript’s equivalent while preserv-
ing their performance scheme. From a less technical point
of view, for small projects, the mandatory maintenance cost
needed to the modified compiler and adapt it when a new
version of the original compiler is released can be a major
problem.

2.2 Bytecode interpretation in JavaScript

An alternative approach was tried by Benjamin Canou in
2008 : OBrowser|11], an OCaml virtual machine (or byte-
code interpreter) written in JavaScript. This is an approach
we highly recommend to language implementors, at least as
a first prototype, since it solves most of the difficulties of a
direct compiler as previously presented.

A clear advantage of the approach is its development cost.
Indeed, a complete virtual machine and environment can be
achieved in a few weeks, and a less than a handful thousands
lines of JavaScript code. Moreover, since bytecode formats
changes very rarely compared to the associated source lan-
guages, maintenance cost is also drastically reduced.

The experiment was focused on compatibility, and managed
to maintain a high level of similarity with the original OCaml
in terms of semantics. It included for instance a very similar
FFI (foreign functions interface) and a fully compatible bi-
nary serialization format. In terms of compatibility, the ap-
proach is a clear win over compilation techniques. Clearly,
this gain comes from the virtual machine structure, since
the implementor mainly has to ensure the compatibility of a
small set of low level instructions, instead of the whole source
language. In the same vein, this structure clearly made the
debugging of the system easier, by comparing step by step
the state of the original OCaml machine with OBrowser’s
on the same program.

Also, even if the experiment was not focused on perfor-
mance, OBrowser managed to keep execution times around
an order of magnitude (or less) from JavaScript equiva-
lents, a result actually good enough for the vast majority
of browser scripting tasks, in which raw computation speed
is not the bottleneck, but interaction and rendering. As an
example, a Boulder Dash clone written in OCaml and inter-
preted by OBrowser is available online[3] for the reader to
try and see.

2.3 Bytecode to JavaScript recompilation

In the continuation of OBrowser, Jérome Vouillon wrote
js_of_ocaml, a tool which takes an OCaml bytecode file
and, instead of interpreting it directly in the browser, re-
compiles it to a JavaScript program ahead of time, on the
developper’s machine.

This method is a compromise between a compiler and a vir-
tual machine. As with the virtual machine approach, start-
ing with the bytecode instead of the source reduces main-
tenance costs. However, it is quite more complex to write,
and as with a compiler from source, it is more difficult to
keep the exact same semantics.

The main advantage over a bytecode interpreter is perfor-
mance. Indeed, by expanding the control flow of the byte-
code program to JavaScript code, it can take advantage of
recent trace-based optimizations in JavaScript engines. It
is also possible to perform optimizations, such as dead code
elimination, unboxing or inlining, to obtain better perfor-
mance. In practice js_of_ocaml manages to get execution
times close to equivalent native JavaScript programs|4]. To
demonstrate the performance, a software rendered animated
3D view of the earth in OCaml recompiled by js_of_ocaml
is available online[5].

3. USING EXISTING JAVASCRIPT CODE

Being able to run any language in a browser is interesting in
itself, and may be sufficient in some cases, for instance for
live Web demos of existing software. But most of the time,
being able to manipulate the Web page is a primary need,
as well as being able to use existing, rich and widespread
scripting libraries, such as jQuery or Dojo.

The first requirement is to be able to manipulate the Web
page dynamically. This is done using the DOM (document
object model) : all the elements of the page are reified as
predefined JavaScript objects, so that the program can tra-
verse the document tree, delete or add children nodes as well

as modify the content and style by calling predefined meth-
ods on these objects. Given this structure, there are two
ways to bring DOM manipulation to the hosted language.

The most obvious way is to reuse the existing FFI (Foreign
Function Interface) provided by most languages, and usually
designed to call external C or assembly symbols, to call the
aforementioned JavaScript predefined methods instead. To
use a more common example than OCaml, a Java port could
for instance define an object Node, which reuses the JNI
mechanism to encapsulate a native JavaScript DOM node
and provide a Java method corresponding to each prede-
fined JavaScript method on (appendChild, getElementById,
etc.).

An alternative, more lightweight solution is to provide the
hosted language with a small set of primitives sufficient to
operate on JavaScript objects (eval, get, set, call_method,
etc.). However, this method are a possible performance loss,
and the fact that it requires a more expressive language than
the first solution.

The same two methods can be used to interface JavaScript
libraries. However, it can be useful in some cases to define a
more high level interface over such low-level bindings, for in-
stance by mapping types or classes to the concepts provided
by the library.

4. CONCURRENCY MODELS

In many Web frameworks, concurrency is considered a side
topic, and handled in an unclear, or at least undocumented
way. However, concurrency is a key aspect of numerous pro-
gramming languages, and should not be overlooked when
porting them to the Web browser, since the behaviour of
programs may be vastly affected by the use of a different
concurrency model. OCaml is such a language, since it sup-
ports several, well defined concurrency models. This section
describes how we managed to implement these models, and
thus are able to maintain the original semantics of the lan-
guage. Here again, we shall see that starting from bytecode
for a virtual machine is a clear advantage.

4.1 Concurrency in JavaScript

Before presenting our techniques to implement concurrency
models, we have to start with a quick description of the state
of concurrency in JavaScript.

The Event loop. In JavaScript, concurrency is handled by
a classical event loop. Events occurring in the Web page
are buffered in a queue, which is emptied at each loop step,
by calling sequentially all the associated handlers. After
each step, the rendering engine updates the display of the
page. As a side effect, a looping script simply blocks the
execution, and concurrency has to be handled entirely by
hand, by splitting basic code parts in separate functions,
and manually transmitting the shared state.

Web Workers[6)]. For many reasons, recent rich client side
Web applications tend to rely exclusively on browsers buit-
in features. However, historically, advanced tasks such as

socket-based communications, 3D, etc. where delegated to
plug-ins, such as Adobe Flash or Java. In order not to rely
on plug-ins anymore, browsers have to catch up on these
features. This work is known as HTML5, and primarily
consists in the aggregation of proposals made by browser
vendors. One of these proposal is known as Web Workers,
and is know quite widely available. A Web Worker is simply
a thread running JavaScript code, which can be launched
from a script inside a Web page, and can only communicate
through (string) message passing. It can be useful to write a
long computation in direct style, without blocking the user
interface. However, it can neither return complex objects
(without serializing them) nor interact with the user or the
DOM.

4.2 Implementing a concurrency model

This section explains how to implement different concur-
rency models and how to take advantages of recent parallel
extensions, in the context of the virtual machine based tech-
niques previously presented.

Preemptive threads in OBrowser. Thanks to the simple
virtual machine structure, OBrowser is able to simulate pre-
emptive threads. This is an interesting point, since it is the
concurrency model provided by most languages. This is per-
formed by transforming the interpreting loop into a schedul-
ing loop, that distributes execution time between threads.
Another interesting result is that the scheduling interpreter
is able to stop itself to let the browser perform an event
loop step, and resume the interpretation afterwards. This
makes possible to write an infinite loop in a thread, without
blocking the interface completely.

Cooperative threads with Lwt. The cooperative thread-
ing model is largely adopted in OCaml, in particular through
the Lwt[15] library, which encodes concurrency using the
functional paradigm. This concurrency model has the ad-
vantage to be quite close to the event loop model, and can be
compiled to JavaScript easily and reasonably efficiently. It is
thus a good model to look at, to obtain a clearer concurrency
model than the event loop at a reasonable cost. But it needs
an expressive language to be encoded in a concise way and
a high level enough virtual machine to be able to recognize
basic concurrent operations. For instance, it is possible in
js_of_ocaml since closure creation is a specific instruction of
the virtual machine, allowing to compile them to JavaScript
closures that can be fed to the event queue. It is also pos-
sible for less flexible languages, but with a little more work,
and maybe only from source. Links|[12] for instance performs
a CPS (continuation passing style) code transformation to
support its concurrency model on the client.

Concurrency extensions. To us, the virtual machine is
clearly a good level to implement various concurrency mod-
els. But this approach can also come of great help when in-
tegrating extensions of the concurrency model, such as Web
Workers. First, to be able to integrate such extensions in a
way which wont surprise the programmer, having a clear and
consistent concurrency model is a key point. As a concrete

example, in the original (Unix) version of Lwt, a primitive is
provided to launch a preemptive thread (and wait for its re-
turn value) from a cooperative one. This primitive is present
to perform blocking calls to external libraries from coopera-
tive programs. Integrating Web Workers is thus simply using
this existing behaviour, giving a consistent vision of concur-
rency to the programmer. Another interesting possibility is
the ability to use the virtual machine structure to provide
less restricted parallel threads on top of Web Workers. For
instance, a byte-code interpreter could use Web Workers to
run threads in parallel, and automatically migrate their ex-
ecution to the main process whenever they have to perform
a DOM operation.

5. CONCLUSION

We have seen three approaches to use a foreign language in
the browser, discussed their pros and cons in terms of core
language execution, interoperability and concurrency.

The table below summarizes the advantages of each ap-
proach, rating each trait from (+) to (+++).

| | Compiler | VM | Expanser |

Simplicity + ++ T
Semantics preserv. ++ 44+ ++
Maintenance + +++ +++
Performance +++ + T
Concurrency ++ T+ ¥

As a conclusion, we recommend to a programmer willing to
port its preferred language to Web browsers not to rewrite
a compiler from source, but instead to reuse the bytecode
target of its compiler, write a virtual machine in JavaScript,
and then write a bytecode to JavaScript expanser if perfor-
mance problems arise. Another important point is to clarify
the concurrency model, and if possible to reuse the original
model(s) of the language (and as we’ve seen, this task is
easier at the bytecode level).

This approach has many advantages. First, you get a run-
ning prototype reasonably fast thanks to the interpreter
method, and you can start writing applications without wait-
ing for the expanser to be complete and optimized. Second,
a clear and high level concurrency model gives a better pro-
gramming experience, and helps integrating HTML5 exten-
sions such as Web Workers or WebCL. And last but not
least, the bytecode interpreter method can be used to im-
plement debugging facilities (breakpoints, step by step ex-
ecution, profiling, etc.), which given the difficulty to debug
compiled-to-JavaScript programs is a very interesting fea-
ture.

Recently, several other projects have also taken the virtual
machine approach to be able to run in the browser bina-
ries produced by existing compilers. We can cite Python|7],
Ruby|9] and Javal|8|] for general-purpose languages, but also
more exotic platforms such as old game scripting engines
and even game console simulators.

6. REFERENCES
1] http://code.google.com/webtoolkit/\
2] https://github.com/jaked/ocamljs.
3] http://www.pps.jussieu.fr/~canou/bdash/.
4] http://ocsigen.org/js_of _ocaml/performances.

[

[

[

[

[5] http://ocsigen.org/js_of_ocaml/files/planet/index.html.

[6] http://dev.w3.org/html5/workers/.

[7] http://code.google.com/p/pejs.

[8] https://github.com/nurv/BicaVM.

[9] Ruby on javascript and flash. http://hotruby.yukoba. jp.

[10] V. Balat, J. Vouillon, and B. Yakobowski. Experience
report: ocsigen, a web programming framework. In
G. Hutton and A. P. Tolmach, editors, ICFP, pages
311-316. ACM, 2009.

[11] B. Canou, V. Balat, and E. Chailloux. O’browser:
objective caml on browsers. In Proceedings of the ACM
Workshop on ML, 2008, Victoria, BC, Canaday,
September 21, 2008, pages 69-78. ACM, 2008.

[12] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links:
Web programming without tiers. In FMCO, pages
266-296, 2006.

[13] X. Leroy. The Objective Caml system release 3.12 :
Documentation and user’s manual. Technical report,
Inria, 2011. http://caml.inria.frl

[14] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a
language for programming the web 2.0. In P. L. Tarr
and W. R. Cook, editors, OOPSLA Companion, pages
975-985. ACM, 2006.

[15] J. Vouillon. Lwt: a cooperative thread library. In
Proceedings of the ACM Workshop on ML, 2008,
Victoria, BC, Canaday, September 21, 2008, pages
3-12. ACM, 2008.

http://code.google.com/webtoolkit/
https://github.com/jaked/ocamljs
http://www.pps.jussieu.fr/~canou/bdash/
http://ocsigen.org/js_of_ocaml/performances
http://ocsigen.org/js_of_ocaml/files/planet/index.html
http://dev.w3.org/html5/workers/
http://code.google.com/p/pejs
https://github.com/nurv/BicaVM
http://hotruby.yukoba.jp
http://caml.inria.fr

	Introduction
	Executing the core language
	Compilation to JavaScript
	Bytecode interpretation in JavaScript
	Bytecode to JavaScript recompilation

	Using existing JavaScript code
	Concurrency models
	Concurrency in JavaScript
	Implementing a concurrency model

	Conclusion
	References

