
Static Typing & JavaScript Libraries:
Towards a More Considerate Relationship

∗

Benjamin Canou
LIP6 - UMR 7606

Université Pierre et Marie Curie
Sorbonne Universités

4 place Jussieu, 75005 Paris, France
Benjamin.Canou@lip6.fr

Emmanuel Chailloux
LIP6 - UMR 7606

Université Pierre et Marie Curie
Sorbonne Universités

4 place Jussieu, 75005 Paris, France
Emmanuel.Chailloux@lip6.fr

Vincent Botbol
Université Pierre et Marie Curie

Sorbonne Universités
4 place Jussieu, 75005 Paris, France

Vincent.Botbol@etu.upmc.fr

ABSTRACT

In this paper, after relating a short history of the mostly unhappy

relationship between static typing and JavaScript (JS), we explain a

new attempt at conciliating them which is more respectful of both

worlds than other approaches. As an example, we present Onyo [1],

an advanced binding of the Enyo JS library for the OCaml lan-

guage. Onyo exploits the expressiveness of OCaml’s type system

to properly encode the structure of the library, preserving its de-

sign while statically checking that it is used correctly, and without

introducing runtime overhead.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Interoperability;

D.3.3 [Programming languages]: Language Constructs and Fea-

tures; D.3.4 [Programming languages]: Processors

General Terms

Design, Languages, Experimentation

Keywords

JavaScript, OCaml, Static Typing, Interoperability

1. JS IS NOT JAVA
The most common method to bring static typing to JS libraries

is to mold them into a Java-like shape. In the early days of mod-

ern Web, several libraries emerged that simulated Java’s OO op-

erations. The goal was for mainstream developers to feel more at

home in the browser, and to reuse existing development methods

for Java.

We do not argue on the motivations behind this approach. Col-

laborative development of any non trivial application or library can-

∗Work partially supported by the French national research agency
(ANR), PWD project, grant ANR-09-EMER-009-01 and performed
at the IRILL center for Free Software Research and Innovation in
Paris, France.

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

not be done without agreeing on coding rules and conventions be-

forehand. Even for lonesome hackers, prototypes are so flexible

that many prefer the use a simple set of higher level operations to

define or alter object types. High level object model libraries are

thus unarguably a good idea. The point on which we disagree with

many libraries is the choice of Java’s object model. In the context

of Java client-server applications, it is a viable option to use the

language to enforce consistency throughout the entire application

and understanding among developers. This is for instance the valid

choice made by Google in GWT [2].

But for brand new JS developments, this approach has no objec-

tive ground, and in practice, it has not convinced the designers of

major libraries. A simple look at jQuery [3] or Dojo [4] shows that

their implicit object model is not Java’s. For data polymorphism,

JS library designers simply rely on duck typing1 instead of using a

hierarchy of classes and interfaces. JS programmers tend to use a

mix of functional and imperative styles, using objects as extensible

records more than as encapsulated components. Even when objects

are used as autonomous components, encapsulation and visibility,

which are central topics in Java, are not considered important. For

instance, introspection and patching of user code by libraries and

vice versa are common practices.

This dogmatic choice of Java-like constructs has had a bad influ-

ence on recent Web languages and frameworks, at the expense of

both prototypes and static typing. Recent typed derivatives of JS

(eg. Dart [5], TypeScript [6]) are a striking example. All of them

define a Java-like object model and type system. But to restore the

compatibility with native JS code, their designers have introduced

relaxed typing rules, making these object models and type systems

more or less optional. Even the now defunct JS 2 and the sixth

release of ECMAScript introduce Java style classes, validating the

belief that prototypes are not a satisfactory object model.

In this paper, we argue that the expressiveness of prototypes can

lead to interesting, innovative designs and should not be thrown

away. For this, we show that with a little work, this expressiveness

can be tamed by an appropriate static type system. For this, we

present a series of experiments we made around the Ocsigen [7, 9,

10] project to handle external JS libraries. Ocsigen is based on the

OCaml [11] language, which has many similarities with JS: both

1If it looks like a duck, swims like a duck, and quacks like a duck,
then it probably is a duck.



imperative and functional with a structural object layer. However,

OCaml is very different from JS on one central point: it has a very

strong and static typing policy. By taking advantage of the simi-

larities between the languages, and because OCaml’s type system

is more flexible and expressive than Java’s, we are able to build

bindings to existing libraries that manage to (1) give a faithful view

of the library’s architecture, (2) provide a statically typed interface

and (3) do not seem too much foreign for the OCaml programmer.

In the end, OCaml programs manage to be typesafe not only during

pure OCaml execution but also when talking to JS libraries.

In section 2 we explain how we designed a direct mapping be-

tween OCaml’s static type system for objects to JS’s duck typing.

In section 3, we explained how we designed static interfaces be-

tween libraries written in JS and OCaml program using them using

Enyo [8] as an example.

2. TYPING JS OBJECTS
Several new languages and research works have attempted to

provide a static type system for JS. Although interesting, this is

not the subject of our work. We do not want to typecheck existing

libraries, we accept that they have been guaranteed correct, by test-

ing if not by typechecking. What we want to type is our usage of

their APIs, and a first idea is to give static types to the data we pass

to and receive from the library.

Among other paradigms, OCaml can deal with objects. In OCaml,

as in JS, objects can be built on the fly and do not need to belong

to any class. To reflect this in the type system, instead of using a

hierarchy of names, the type of an object is simply the set of its

public methods, along with the types of their arguments and re-

turn values. In other words, the type of an object is a description

of its (public) structure, which can be seen as a static version of

duck typing. Similarity, compatibility between types is not a mat-

ter of inheritance (nominal subtyping) but of structure comparison

(structural subtyping). Thence, in order to describe the structure of

JS values, we naturally started by trying to map every JS object to

an equivalent OCaml object. JS methods were reflected by OCaml

methods and JS attributes by explicit OCaml getters and / or setters.

For this, we preprocessed OCaml’s foreign function declarations to

insert low level conversions between OCaml and JS objects.

For an example JS function defined as follows:

function makeCoord(x, y){ return { x: x, y: y } }

An accurate OCaml binding would be the following:

external make_coord

: ’a -> ’b ->

< x : <get : ’a ; set : ’a -> unit > ;

y : <get : ’b ; set : ’b -> unit > >

= "makeCoord"

Reading: for some argument of some generic type ’a and some

other argument of some other type ’b (arguments and return val-

ues are separated by -> in OCaml), returns an object with a read /

write property x of type ’a and a read / write property x of type ’b.

This may seem a bit cryptic for the unaccustomed reader but actu-

ally is trivial to a programmer familiar with OCaml objects. The

types may also appear long to write, but this is not a problem since

OCaml uses type inference. As in untyped languages, the program-

mer never writes the types of variables or functions, the compiler is

clever enough to synthesize them.

With this technique, the type system ensures the OCaml pro-

grammer that his use of JS object respects their structure. Of course,

this assumes that the binding correctly describes the implementa-

tion. This method also implies that it is indeed possible to deter-

mine statically the structure of JS objects. Indeed, this may not be

the case for arbitrary JS code, but is enough for a lot of JS libraries.

For instance, we managed to give types to most of the browser en-

vironment (DOM elements, events, etc.) and to a significant part of

Google’s closure library.

During these experiments, we realized that we were not really

using OO programming. Objects coming from JS were used as is,

without resorting to inheritance, overriding or even crafting object

from the OCaml side. Indeed, JS libraries tend to use functional

style callbacks rather than method overriding to customize compo-

nents. As a result, the technique used in Ocsigen today is a vari-

ation involving a feature available in OCaml’s type system called

phantom types: types that are more precise than the actual associ-

ated values in order to refine their specification. JS objects are not

seen as OCaml objects but as abstract, foreign values at runtime,

removing the cost of building OCaml objects. However they are

still seen as (phantom) objects from the type system point of view,

so we ensure the same type safety.

In the end, by writing familiar OCaml structural object types,

we manage to give static types to JS APIs, allowing OCaml pro-

grammers to write programs which are entirely type safe, including

foreign calls, at no runtime cost.

3. STATIC TYPES AS AN INTERFACE
The interfaces built with the technique presented in the previous

section are undeniably type safe, however, they are also mandato-

rily low level. Indeed, the technique requires to exhibit the struc-

ture of foreign JS objects, which may not be so useful to the OCaml

programmer.

In this section, we present a different attempt at bringing a type-

safe OCaml binding to a JS library. This time, we chose to use

functional style instead of OO programming. Here again, we use

phantom types to precise the types of foreign values at zero run-

time cost, but these phantom types are high level concepts instead

implementation structure.

Enyo is the toolkit developed by HP for the WebOS platform.

It can also be used to develop mobile Web apps or HTML5 based

Android apps. It is mostly a GUI library that mimics the native

interfaces of modern hand-held devices in the browser. It provides

a hierarchy of components that are (1) wrappers around HTML5

elements, (2) simple GUI items and layouts and (3) advanced wid-

gets (the Onyx module). Enyo is interesting for us because its way

of creating and manipulating components uses a JS centric design

pattern very different from traditional OO component libraries. In

Enyo, object constructors are decoupled from the objects they give

birth to. The programmer first builds a tree of object constructors to

describe its UI. Then, he instantiates its root manually to obtain the

resulting tree of GUI components. In order to retrieve the instances

of specific components, the programmer has to introduce unique

identifiers manually. To customize the behaviour of a component,

the programmer can override one of its methods, but not directly.

For this, he puts in the constructor object a JS method which will be

copied in the resulting object. To extend a component with some

property, the programmer can put its name and value in the con-

structor object. When instantiated, the result is a getter, a setter and

an event triggered when the value changes. This design pattern is

not completely exotic and can be found in other JS libraries, but is

very different from usual OO programming.

We could have chosen to hide this separation under a heavy

duty OCaml object machinery which would have mapped a single

OCaml object to both the constructor and the instantiated object.

But we really wanted to manipulate the JS objects directly, so that



no runtime cost would be introduced, and to give them nice types

which represent the underlying concepts and make their use from

OCaml statically checked.

To implement Onyo, we wanted to try different solutions. So

we chose to ease this experimental step by generating the bind-

ing automatically from an abstract description of the components

defined by the library using an ad hoc IDL (interface description

language). Onyo is thus automatically generated from the set of all

components provided by Enyo’s distribution. This method has an

interesting side effect: it is possible to restrict or extend this set of

components at will, and regenerate the bindings accordingly. In the

current version of Onyo, the generated bindings have the following

form.

• Object constructors and instantiated objects belong respec-

tively to parametric types ’a kind and ’a obj. The ’a type

parameter is restricted to be a component from the library,

for instance button kind or tooltip kind. Here, button

and tooltip are just abstract names for the OCaml type sys-

tem, they do not represent the structure of values: they are

the aforementioned phantom types.

• Values of type ’a kind represent object constructors. They

can be obtained only by calling specific constructor functions

which take as optional arguments all the possible properties

and methods defined by the library for this component, as in

the following example.

tooltip:

?components:any_id kind list ->

?modal:bool ->

?floating:bool ->

?ontap:(tooltip obj -> gesture -> bool) ->

(* ... *) ->

tooltip kind

Once created, these values are not mutable, which is consis-

tent with how they are used in plain Enyo. They can be added

as children of other constructors to build the hierarchy.

• Once the hierarchy is built, the programmer calls the follow-

ing function.

instanciate : ’a kind -> unit

• After instantiation, the programmer can use introspection to

browse the instantiated component tree as he does in JS.

However, we provide a more typesafe alternative through the

following function.

instance : ’a kind -> ’a obj

By storing the constructors in variables, the programmer can

retrieve the corresponding components after instantiation. The

retrieved object has a precise static type since the phantom

type is transmitted (for example, if the programmer asks for

the instance of a button kind, he obtains a button obj

and not a generic component). This is implemented by gen-

erating identifiers automatically.

• Properties and methods can be accessed by global functions

which can only be applied to compatible components, as in

the following example.

scrollToBottom : [pulldown | list] obj -> unit

Only values of type pulldown obj or of type list obj can

be passed (the vertical bar in the phantom type reads or).

In the end, we obtain a functional OCaml interface to Enyo which

is almost completely typesafe (the only dynamic error that can arise

is if instance is called before the GUI is instanciated) and has a

very small overhead (only the automatic identifier generation). The

result is also reasonably concise and OCaml like, as in the min-

imal example below (a button which displays how many times it

has been clicked).

let cpt = ref 0 in

button ~content:"0"

~ontap:(fun self ->

incr cpt ;

setContent self (string_of_int !cpt))

4. CONCLUSION
We have shown, using a practical use case how it is possible

to define statically typed bindings to JS libraries, even when their

design is a bit exotic. We have been able to achieve this result by

using an expressive type system2 and by choosing an appropriate

level of abstraction. We hope that these experiment are a step in

convincing the world that static typing is not as incompatible with

the Web as it can seem, and that introducing static typing does not

necessarily mean throwing away innovative design possibilities. In

the future, we plan to try and give nice interfaces to more libraries

and use them type-safely ever after.

5. REFERENCES
[1] https://github.com/klakplok/onyo.

[2] http://code.google.com/webtoolkit/.

[3] http://www.jquery.org/.

[4] http://www.dojotoolkit.org/.

[5] http://www.dartlang.org/.

[6] http://www.typescriptlang.org/.

[7] http://www.ocsigen.org/.

[8] http://www.enyojs.com/.

[9] V. Balat, P. Chambart, and G. Henry. Client-server web

applications with ocsigen. In World Wide Web Conference,

developers track, 2012.

[10] V. Balat, J. Vouillon, and B. Yakobowski. Experience report:

ocsigen, a web programming framework. In G. Hutton and

A. P. Tolmach, editors, ICFP, pages 311–316. ACM, 2009.

[11] X. Leroy. The Objective Caml system release 4.01 :

Documentation and user’s manual. Technical report, Inria,

2012. http://caml.inria.fr.

2To be fair with Java’s expressiveness, with a few restrictions
regarding extensibility and readability, it is possible to build an
equivalent of Onyo for Java. The general idea is to encode struc-
tural typing using generated Java interfaces. For instance, the
scrollToBottom function presented earlier could be encoded as
a static method. To restrict the type of its argument, a possible en-
coding would define an interface per component type. The type
of the argument would then be a locally defined interface, which
inherits the ones of pulldown and list.

https://github.com/klakplok/onyo
http://code.google.com/webtoolkit/
http://www.jquery.org/
http://www.dojotoolkit.org/
http://www.dartlang.org/
http://www.typescriptlang.org/
http://www.ocsigen.org/
http://www.enyojs.com/
http://caml.inria.fr

	JS is not Java
	Typing JS objects
	Static types as an interface
	Conclusion
	References

