Static Typing & JavaScript Libraries
Towards a More Considerate Relationship
Benjamin Canou, Emmanuel Chailloux, Vincent Botbol

Laboratoire d'Informatique de Paris 6
Université Pierre et Marie Curie

Rio de Janeiro, May 13-17, 2013

Na

World Wide Web 2013 - Developer's Track

Outline of this talk

1. Static Typing and JavaScript (how it's done)

® inresearch works
® inmost advanced mainstream solutions
® in-between: How we doitin today in OCaml

2. The proposed approach (how we propose to do it)

® Manifesto: ideas, goals and why it's worth it
® Concrete technical details

3. Examples! (how we did it)

® Binding example: Raphael.js
(Onyo, an advanced binding to Enyo.js in the paper)
® Hopefully alittle demo

WWW 2013 Static Typing & JavaScript Libraries 2/16

Static Typing and JavaScript

WWW 2013 Static Typing & JavaScript Libraries 3/16

Research works
Type systems for JavaScript (and friends)

Active research field but no universal solution
® What are the underlying data types?

e many use them as extensible records,
e some simulate a Java-like class hierarchy,
e others see only hash tables, etc.

® How to handle the many styles of JavaScript programming ?

e optional parameters (arity, type based, JSON)
e custom event handling mechanisms
e functions as constructors / as methods [as both, etc.

® Whenis a program considered type-safe ?

Decisions to take = biased solutions

WWW 2013 Static Typing & JavaScript Libraries

4/16

Mainstream solutions
JavaScript overlays (eg. TypeScript, Dart)

Strong pragmatic choices:

® Simple, Java-like object model and type system
® JavaScript-like syntax and concurrency model
® Possibility to introduce types progressively in existing code

But not satisfactory enough when focusing on typing:

® Not powerful enough to handle JavaScript's expressiveness
® Library authors often don't (shouldn't) refrain from using expressive features
® Sorelaxed typing rules are introduced to deal with libraries

In the end, two options:

® rewrite everything (incl. libraries) to gain type safety
® use existing libraries and lose type safety

WWW 2013 Static Typing & JavaScript Libraries 5/16

What we do in OCaml

Step 1: write client side programs in OCaml

Step 2: use OCaml's object layer to describe JavaScript values

® OCaml object layeris based on structural subtyping, not nominal subtyping
e one can define an object like this:

1: object

2 val mutable st = 0

3: method incr v = st <— st + v
4 method get () = st

5: end

e typeinferred by the compiler: the set of methods and their types

1: < incr : int — unit ;
2: get : unit — int >

® Much as astaticinterpretation of duck typing!

Step 3: describe the structure of objects coming from libraries precisely

WWW 2013 Static Typing & JavaScript Libraries 6/16

The Approach: Typed Interfaces

WWW 2013 Static Typing & JavaScript Libraries 7116

Let's simplify the problem

Type the interface, not the code:

® Libraries are field proven, no need to re-check them by typing
® |et's write user code directly in a typed language
® Only ensure that libraries are used in the expected way

Materialize concepts as abstract types, don't expose the structure:

® We do not want to know how libraries represent their data
® Foreign concepts (ex. signal, circle, sound) are mapped to abstract types
® Treatments are typed according to their documentation / JavaScript code

A solution more respectful

® of thelibrary: no need to rewrite [tweak it to use it safely
® ofthelanguage: no introduction of foreign structures

WWW 2013 Static Typing & JavaScript Libraries 8/16

A framework for generating typed interfaces

The framework is made of:

® Aninterface description language (IDL)
® A compiler to produce OCaml bindings from interface descriptions
® Atoolto build interface description drafts from the code [doc

Avery specific IDL:

® Describes how the library will look from the typed language
® Describes how it maps to JavaScript calls using predefined constructs
® Based onidioms identified in existing JavaScript code

WWW 2013 Static Typing & JavaScript Libraries 9/16

Application of the method

WWW 2013 Static Typing & JavaScript Libraries 10/16

Binding Raphael.js

Atypical example:

® Specialized, well delimited scope (vector graphics), portable, robust
® Fairly simple interface, reasonably documented
® Yet featuring some non trivial to type features
Practical problem: polymorphic (key x value) store
® Away to store and retrieve generic data in nodes
1: Element.prototype.data
2 = function (key, obj) {
3 if (arguments.length > 1)
4: this.d.key = obj
5: else
6 : return this.d.key
7 }
8
9

: E.prototype.removeData
= function (key) {delete this.d.key}

® Hard to write in most typed languages (heterogeneous collections)
® Trivial to write in JavaScript, but can we type the interface?

WWW 2013 Static Typing & JavaScript Libraries 11/16

Binding Raphael.js

To obtain a high level of type safety:

® We give keys an abstract type key

= we materialize the concept (not just strings), can document it, etc.
® Wegiveatype parameter t keyandlinkit to the data

= ensures that one key is always associated to one type
® The construtor uses the IDL idiom [keyword gen_sym

= keys are unforgeable so no type collisions

Definition in the IDL:

: type t key
= gen_sym

get (this : element, k : t key) : nullable t
= method Element.data (k)

set (this : element, k : t key, v : t)
= method Element.data (k, v)

: remove (this : element, k : t key)

= method Element.removeData (k)

WWW 2013 Static Typing & JavaScript Libraries 12/16

0NN OV D WN

Binding Raphael.js

The generated interface:

: module Data : sig

1

2 type
3: val
4 val
5: val
6 : val
7 : end

'a key

make_key : unit — 'a key

get element — 'a key —> 'a option
set element — 'a key — 'a —> unit
remove —> 'a key —> unit

An example use:

(* col

OOV D WN A

WWW 2013

let color = Data.make_key () in

(* allocates a new 'a key

Data.set elt color "blue" ;

(* when first used, the type parameter is fixed

or passes from ['a key] to [string key]

Data.set elt color 25
(* will produce an error at compile time:
(* types [int key] and [string key] incompatible

Static Typing & JavaScript Libraries

*)
*)
*)
*)
*)

13/16

About JavaScript and documentation

Main problems:

® Everyone (re)invents the wheel

® The missing legend symptom (conventions used but never defined)
® Higher order (functions, objects) descriptions often missing

® Examples are good, but not enough

Alittle twist

® Amajorslow-down when building typed interfaces is the lack of documentation
® Butonce made, typed interfaces can constitute a unified documentation

WWW 2013 Static Typing & JavaScript Libraries 14 /16

Demo

® Aglimpse at the interface definition
® The generated documentation
® An OCaml app mixing several JavaScript libraries

WWW 2013 Static Typing & JavaScript Libraries 15/16

Conclusion

In a few words: types as an added value, not a constraint.

Type safe use of JavaScript libraries is possible

® Without hurting anyone's feelings

® When helped with an automation tool

® With some work to identify the original concepts
® (Can help with documenting libraries

We are building a tool

® To use JavaScript libraries from OCaml (adaptable to Scala, Haskell, etc.)
® (Capable of integrating several libraries in one development platform
® Asopensource of course, expect news on ocsigen.org

WWW 2013 Static Typing & JavaScript Libraries 16/16

A more complex library: binding Enyo.js

Difficult to type traits:

® Constructors and instances of components are decoupled
® Manual ID based component retrieval
® Remote event handling with custom events

Solutions:

® Automatic ID generation
® Automatic typed link between constructor and instance

1: val instance : 'a kind —> 'a obj

® Abstract type for typed signal with gen_sym

1: val make_signal : unit — 'a signal
2 : val trigger : 'a signal — 'a —> unit
3 : val handle : 'a signal — ('a —> unit) —> unit

WWW 2013 Static Typing & JavaScript Libraries 17116

